
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 26 (2003) 109–122

The R-function method for the free vibration analysis of thin
orthotropic plates of arbitrary shape

Lidia Kurpaa, Vladimir Rvacheva, Eduard Ventselb,*
aDivision of Applied Mathematics, Institute of Mechanical Engineering of the Ukrainian National Academy of Sciences,

2/10 Pozharsky St., 310146 Kharkov, Ukraine
bDepartment of Engineering Science & Mechanics, The Pennsylvania State University, 205A Earth & Engineering

Sciences Building, University Park, PA 16802-1401, USA

Received 2 August 2001; accepted 3 May 2002

Abstract

Free flexural vibrations of homogeneous, thin, orthotropic plates of an arbitrary shape with mixed
boundary conditions are studied using the R-function method. The proposed method is based on the use of
the R-function theory and variational methods. In contrast to the widely used methods of the network type
(finite differences, finite element, and boundary element methods), in the R-function method all the
geometric information given in the boundary value problem statement is represented in an analytical form.
This allows one to seek a solution in a form of some formulas called a solution structure. These solution
structures contain some indefinite functional components that can be determined by using any variational
method. A method of constructing the solution structures satisfying the required mixed boundary
conditions for eigenvalue plate bending problems is described. Numerical examples for the vibration
analysis of orthotropic plates of complex geometry with mixed boundary conditions for illustrating the
aforementioned R-function method and comparison against the other methods are made to demonstrate its
merits.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The vibration analysis of isotropic and orthotropic thin plates of an arbitrary shape with mixed
boundary conditions is of primary importance for structural mechanics. At the same time, it
presents considerable mathematical difficulties. Dynamic analysis of isotropic and orthotropic
plates with arbitrary boundary conditions has been analyzed by many researchers [1–14].
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Analytical solutions for such kinds of problems can be obtained for thin plates with relatively
simple plan forms [1–3,7]. In all other cases, the dynamic analysis mentioned above can be done
only by numerical methods. The most widely used numerical methods for this type of vibration
problems are the finite element method (FEM) and boundary element method (BEM). Literature
reviews of dynamic analysis of plates using BEM and FEM are given by Beskos [10] and Mackerle
[11]. Free vibrations of plates of an arbitrary shape have also been studied by the boundary
collocation method [12,13]. A comprehensive review of vibration analysis of plates by analytical
and some numerical methods is given by Leissa [3].
Despite the success of FEM and BEM in dynamic analysis of plates of an arbitrary shape, there

are serious drawbacks. FEM requires a large number of domain elements to obtain accurate
results. BEM offers two basic approaches for treating plate dynamic analysis. The first approach
employs the dynamic fundamental solution of the problem in its formulation and this results in an
integral representation involving only boundary integrals. The efficiency of such an approach is
greatly hampered by the complicated form of the dynamic fundamental solution, which involves
Hankel functions. As a result, the free vibration problem involves frequency-dependent complex
matrices. Computation of the natural frequencies, based on the determinant method, is not
efficient. The second approach utilizes the static fundamental solutions in the formulation of the
problem, which creates domain integrals in the integral representation of the solution. This
circumstance also extends the body of numerical calculations and reduces the accuracy of the
method. In addition, it should be noted that an automation of the discretization process of
domains (or boundaries) in the above-mentioned methods of the network type is needed to use
rather intricate algorithms. This often leads to the necessity of solving additional optimization
problems [15].
In this paper, the R-function method (RFM) [16,17] based on the joint application of

variational methods and the R-function theory is developed for solving vibration problems of
thin, orthotropic plates of arbitrary plan forms with mixed boundary conditions. In contrast to
widely used methods of the network type (BEM, FEM, and finite differences method), in RFM all
the geometric information contained in the mathematical models of the fields is transformed to
the analytical form. This allows one to seek a solution in the form of analytical expressions called
solution structures and to construct approximation sequences with the use of variational or other
methods. The solution structures represent a system of co-ordinate functions that satisfy exactly
all of the boundary conditions for an arbitrary geometry of a domain involved. The above-
mentioned allows one to use R-functions as a theoretical basis when developing software packages
for solving various types of boundary value problems of solid mechanics, in particular for the
dynamic analysis of thin, orthotropic plates of complex geometry. The authors have developed
RFM for solving static and vibration problems of thin, isotropic plates previously [18]. In the
present paper, the method is extended to include orthotropic plates of an arbitrary plan form in
the dynamic analysis.

2. Governing equations

Consider a thin, orthotropic plate of constant thickness of surface O and boundary @O: Let us
assume that the axes of symmetry of an orthotropic material coincide with the x1;x2 axes in
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rectangular co-ordinates. The governing differential equation of free vibration bending problems
of this plate, on the basis of Kirchhoff’s classical small deflection theory, has the form [19]
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Here W ¼ W ðx; tÞ is the lateral deflection and E1;E2; W1;W2 are the moduli of elasticity and the
Poisson ratios in the direction of the axes Ox1;Ox2; respectively. G is the shear modules, h is the
plate thickness, r is the mass density per unit plate area, and l is the frequency.
The deflections of the plate must satisfy prescribed boundary conditions on the boundary

@O ¼
SM

i¼0 @Oi: The homogeneous boundary conditions usually employed are as follows [20].
(1) Clamped edge @O1:

W ¼ 0;
@W

@n
¼ 0 8x ¼ ðx1; x2ÞA@O1; ð3Þ

(2) simply supported edge @O2:

W ¼ 0; Mn ¼ 0 8x ¼ ðx1;x2ÞA@O2; ð4Þ

(3) free edge @O3:

Mn ¼ 0; Qn �
@Mnt

@s
¼ 0 8x ¼ ðx1;x2ÞA@O3; ð5Þ

where
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2 aþ M2 sin
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M1 ¼ �D1
@2W

@x2
1

þ W2
@2W

@x2
2

� �
; M2 ¼ �D2

@2W

@x2
2

þ W1
@2W

@x2
1

� �
;

M12 ¼ �2Dk
@2W

@x1@x2
; ð9Þ

Q1 ¼
@M1

@x1
þ

@M12

@x2
; Q2 ¼

@M2

@x2
�

@M12

@x1
: ð10Þ

In the aforementioned relations, Mn and Mnt are the normal and twisting moments at a point on
the boundary with the outward normal n and the tangent t; respectively, and Qn is the normal
shear force defined also on the boundary; s denotes the arc length measured along the boundary; a
is an angle between the outward normal n and the x1 axis.
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3. The general scheme of RFM in the vibration plate bending problems

According to RFM, a solution of boundary value problems is represented in the form of the
solution structure. The latter has the form of a formula and for the vibration plate bending
problems (1)–(5) can be sought as [16,17]

W ¼ BðF;o;oiÞ; ð11Þ

where F is an indefinite component of the solution structure and o;oi are some functions that
describe equation of a domain boundary @O or its separate parts @Oi and satisfy the prescribed
boundary conditions (3)–(5). The indefinite component F can be found by using some general
principles of approximate methods. So, in reducing an infinite-dimensional problem to a finite-
dimensional one, let us represent the above-mentioned component in the form of

FðxÞDFN ¼
XN

j¼1

CjjjðxÞ; ð12Þ

where fjjg are known elements of some functional space containing F and forming some
complete sequences in this space. For fjjg we may select, for instance, algebraic or Chebyshev
polynomials, trigonometric functions, splines, or other approximation functions. The unknown
coefficients Cj in representation (12) can be determined from conditions of the best satisfaction (in
one sense or another) of the governing Eq. (1). As it follows from the theory of variational
methods [21], such conditions are equivalent to the problem of minimizing the functional

IðW Þ ¼
Z
O
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Notice that the second condition (4) and conditions (5) are natural for the functional (13) because
it is known that a minimization of the functional can be carried out on a set of functions satisfying
only the so-called principal or kinematic conditions (3) and (4) (first one) [21].
The general procedure of solving the boundary value problem (1)–(5) by RFM includes the

following steps:

(1) Write equation o ¼ 0 of the boundary qO or its separate parts qOi if mixed boundary
conditions are given.

(2) Construct the solution structure (11) that satisfies exactly all the prescribed boundary
conditions or only principal boundary conditions and contains some indefinite, free
components F:

(c) Determine these indefinite components by using any variational or other methods.

Let us consider the construction of the solution structure (11) for orthotropic plates with mixed
boundary conditions. For example, consider the solution structure that satisfies exactly the mixed
boundary conditions of the type partially clamped (qO1) and partially simply supported (qO2)
parts of the boundary qO: To develop this structure we can use the formula

W ¼
W1

o2
1

þ
W2

o3
2

� �
1

o2
1

þ
1

o3
2

� ��1

: ð14Þ
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Here, W1 is the solution structure that satisfies exactly the boundary conditions (3) on qO1 and W2

is the structure that satisfies the boundary conditions (4) on qO2: It can be seen that W1 can be
represented as

W1 ¼ o2
1F1; ð15Þ

where o1 ¼ 0 is the equation of a clamped part qO1 of the boundary.
Let us consider in detail how to construct the function W2: Substituting expressions (9) for

M1;M2; and M12 into Eq. (6) and going from differentiation with respect to the variables x1;x2 to
the differentiation with respect to the normal n and the tangent t directions at point xAqO; Eq. (6)
becomes

Mn ¼ A0
1

@2W

@n2
þ 2A0

2

@2W

@n@t
þ A0

3

@2W

@t2
; ð16Þ

where

A0
1 ¼ �ðD1 cos

4 aþ D2 sin
4 aþ 2H cos2 a sin2 aÞ;

A0
2 ¼ �ððH � D1Þcos2aþ ðD2 � HÞsin2 aÞcos a sin a;

A0
3 ¼ �ðD1W2 þ ðD1 þ D2 � HÞcos2 a sin2 aÞ: ð17Þ

Let o2 ¼ 0 be a normalized equation of the simply supported part qO2 of the boundary. This
means that o2 must satisfy the conditions [16]:

o2 ¼ 0; 8x ¼ ðx1; x2ÞAqO2; jro2ðxÞj ¼ 1; 8x ¼ ðx1; x2ÞAqO2; o2ðxÞ > 0 8x ¼ ðx1; x2ÞAO:

ð18Þ

One can see that the functions cos a and sin a can be continued into the domain O in the following
manner:

cos a ¼ �
@o2

@x1
; sin a ¼ �

@o2

@x2
:

Then formula (17) for the coefficients A0
i ði ¼ 1; 2; 3Þ becomes
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: ð19Þ

Let us denote the curvature of the boundary @O2 at point x by 1=rðxÞ: Assume also that the
function A0

1 satisfies the conditions

A0
1a0 8xAqO2; A0

1p0 8xAO:
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Using the differential operators of the special type D
j
k and T

j
k which have the form [16]:

D
j
k f ¼ ð�1Þkðroj;rÞkf ; T

j
1 f ¼

@f

@x1

@oj

@x2
�

@f

@x2

@oj

@x1
; ð20Þ

we can prove the following theorem.

Theorem. If the function o2ðxÞ satisfies conditions (18) and functions F2 and F3 are chosen as
F2ðxÞAC3ðO,@OÞ; F3ðxÞAC2ðO,@OÞ; then the function

W2 ¼ o2F2 þ
o2

2A
0
3F2

2rðA0
1 � o2Þ

�
o2

2

2ðA0
1 � o2Þ

ðð2D
ð2Þ
1 F2 þ F2D

ð2Þ
2 o2ÞA0

1 þ 2A0
2T

ð2Þ
1 F2Þ þ o3

2F3; ð21Þ

is a general and complete solution structure that satisfies the boundary conditions (4).

Let the function o2ðxÞ be a normalized one to the second degree, that is, in addition to Eq. (18),
it satisfies the condition

@2o2

@n2
¼ 0; 8xAqO2: ð22Þ

To construct such function (denoted by oð2Þ
2 ) we can use the formula

oð2Þ
2 ¼ o2ðxÞ þ o2ðxþ tÞ=3; ð23Þ

where

t ¼ ðh1; h2Þ;

and

h1 ¼ �o2ðx1 þ 1
2
o2ðxÞ; x2Þ þ o2ðx1 � 1

2
o2ðxÞ;x2Þ;

h2 ¼ �o2ðx1; x2 þ 1
2
o2ðxÞÞ þ o2ðx1;x2 � 1

2
o2ðxÞÞ:

Using the formulas

o2
@o2

@x1
¼ �h1 þ 0ðo2

2Þ; o2
@o2

@x2
¼ �h2 þ 0ðo2

2Þ; ð24Þ

which are valid in the vicinity of the boundary @O2; it is possible to transform Eq. (21) to the form

W2ðxÞ ¼o2F2 þ
o2

2A
0
3F2

2rðA0
1 � o2Þ

þ
o2

A0
1 � o2

@F2

@x1
ðA0

1h1 � A0
2h2Þ þ

@F2

@x2
ðA0

1h2 þ A0
2h1Þ

� �
þ o3

2F3: ð25Þ

This formula also represents the solution structure. It satisfies exactly the boundary conditions (4)
on @O2: Thus, the structures W1 and W2 have been constructed and formula (14) represents the
general solution structure that satisfies exactly the mixed boundary conditions (3) and (4)
prescribed on @O1 and @O2; respectively. The indefinite functions Fi ði ¼ 1; 2; 3Þ can be
represented in the form of Eq. (12).
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Since the second condition (4) is a natural one for functional (13), the solution structure may be
simplified to the form

W ¼ o1oF: ð26Þ

This is sometimes more efficient for the numerical realization of the RFM.
The problem of free vibrations of orthotropic plates (1)–(5) can now be reduced to a standard

matrix eigenvalue problem of classical dynamic analysis. Substituting Fi in the form of Eq. (12)
into functional (13), and using conditions of the minimum of this functional, one can obtain a
system of homogeneous algebraic equations for the unknown coefficients C

ðiÞ
j : The conditions for

a non-trivial solution of this system lead to the frequency equation which provides all the infinitely
many natural frequencies of the plate being analyzed. For every natural frequency one can obtain
the corresponding modal shape.

4. Numerical results

The general procedure of the RFM and numerical algorithms described above for dynamic
analysis of thin orthotropic plates of complex geometry with mixed boundary conditions has been
incorporated into a software package Polye-Plast system based on a general RFM formulation for
various problems of solid mechanics. This package includes programs for executing the
operations of construction of the solution structure (11), differentiation, integration, solving
systems of linear algebraic equations, determining eigenvalues, presentation and output of results
and other kinds of software support. The databases of the Polye-Plast system contain a wide set of
domains, solution structures for various types of boundary conditions, and complete systems of
approximate polynomials, etc.
Below we present a small selection of numerical results obtained with the software

package Polye-Plast to illustrate the performance of the method, its relative accuracy,
and overall effectiveness. The testing of the proposed method was carried out for the problems
of vibration of isotropic and orthotropic square plates with mixed boundary conditions as
shown in Figs. 1(a) and (b). These problems have also been analyzed in Refs. [1,2,3]. In
these figures, clamped parts of plates are marked by shading and simply supported parts by dotted
lines. For all the examples given below, the solution structures can be given by either Eqs. (14) or
(26).

4.1. Example 1

For the plate shown in Fig. 1(a) a normalized equation of the clamped edge can be presented as
the unification of the line segments GK and EF, namely in the form

o1 ¼ F130F2 ¼ 0;

where F1 ¼ ðs1 � ðx2
1 � a2

1Þ=ð2a1Þ is the part of the plane placed outside the vertical strip jx1jXa1;
F2 ¼ ðs2 � ða22 � x2

2Þ=ð2aÞ is the part of the plane placed inside the horizontal strip jx2jpa; and30

is the symbol of the R-disjunction:

X30Y ¼ X þ Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
:
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The function o1 equals zero over the line segments EF, GK, and rays EL, FM, GR, and KP that
are not included in the domain O: Inside the data domain, the function o1 > 0 and its normal
derivative equals unity over the line segments EF and GK. The function o2 can be represented as

o2 ¼ �F130ðF240F3Þ ¼ 0;

where F3 ¼ ðs3 � ða2 � x2
1Þ=ð2aÞX0Þ is a part of the plane placed inside the vertical strip jx1jpa:

The functions F1 and F2 have the same sense as above, 40 is the symbol of R-conjunction. The

Fig. 1. Numerical examples: (a) Example 1 and (b) Example 2.
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equation of the boundary is given by

o � F240F3 ¼ 0:

4.2. Example 2

For the plate shown in Fig. 1b, the normalized equation of the clamped segment of the
boundary can be represented in the form

o1 ¼ ðF240F3Þ30ððF53F6Þ30ðF730F8ÞÞ ¼ 0; ð27Þ

where the function F2;F3 have the same sense as in Example 1 and Fiði ¼ 5; 6; 7; 8Þ are the parts of
the plane placed inside the circles of radius r: The centers of these circles are placed at the points
A1ð0;�aÞ;A2ð0; aÞ;A3ð�a; 0Þ;A4ða; 0Þ; respectively:

F5 ¼ ðs5 � ðr2 � x2
1 � ðx2 þ aÞ2Þ=2=rX0Þ; F6 ¼ ðs6 � ðr2 � x2

1 � ðx2 � aÞ2Þ=2=rX0Þ;

F7 ¼ ðs7 � ðr2 � ðx1 � aÞ2 � x2
2Þ=2=rX0Þ; F8 ¼ ðs8 � ðr2 � ðx1 þ aÞ2 � x2

2Þ=2=rX0Þ:

The function o1 equals zero on the whole boundary except the parts EF, LM, GK, and PR. Its
normal derivative is equal to unity over the above-mentioned clamped boundary. The normalized
equation of the simply supported parts of the boundary @O2 can be represented in the form

o2 ¼ ðF930F2Þ40ðF1030F3Þ;

where F9 ¼ ðs9 � ðx2
1 � r2Þ=ð2rÞX0Þ is the part of the plate placed outside of the vertical strip

jx1jXr; F10 ¼ ðs10 � ðx2
2 � r2Þ=ð2rÞX0Þ is the part of the plane placed outside of the horizontal

strip jx2jXr: The normalized equation of the whole boundary @O is given by the equation o �
F240F3 ¼ 0:
The numerical results presented below were obtained using the solution structure (26). Table 1

presents the first four natural frequency parameters for the isotropic plates shown in Figs. 1(a)
and (b). To examine the accuracy of the results obtained by RFM, they are compared with those
obtained in Refs. [1–3].
Tables 2 and 3 present the first four natural frequency parameters for orthotropic plates shown

in Figs. 1(a) and (b) for the three different combinations of the orthotropic parameters Z and m
and for g ¼ ða1=aÞ ¼ 0:5 and g ¼ 1: These numerical results are also compared with those
obtained in Refs. [1,2]. It can be seen from the comparisons given in the Tables 1–3 that that all
the numerical results obtained by RFM agree well with those obtained by other analytical and
numerical methods for the plates shown in Figs. 1(a) and (b). The percentage error did not exceed
2.5%.

4.3. Example 3

Let us consider a vibration problem for isotropic and orthotropic plate of a complex geometry
as shown in Fig. 2. It is assumed that the straight parts of the boundary (parts MGA, LDE, FCP,
and RBK) are clamped and curvilinear ones are simply supported. The solution structure for this
problem is given by Eq. (26). The normalized equation of the domain boundary @O may be
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written in the form

o ¼ ðF340F2Þ40ð�ðF430F5Þ40ð�ðF630F7ÞÞÞ ¼ 0; ð28Þ

where functions Fiði ¼ 2; 3Þ and signs R-operations 40 ,30 have the same sense as in Example 2.
The functions Fkðk ¼ 4; 5; 6; 7Þ describe subdomains placed inside the ellipses. The normalized
equations for boundaries of these subdomains have the forms

Fi ¼
fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2
i þ jrfij2

q ¼ 0; F4 ¼ 1�
ðx1 � aÞ2

b2
�

x2
2

a22

� �
; F5 ¼ 1�

ðx1 þ aÞ2

b2
�

x2
2

a22

� �
;

F6 ¼ 1�
x2
1

a22
�
ðx2 � aÞ2

b2

� �
; F7 ¼ 1�

ðx2 þ aÞ2

b2
�

x2
1

a2
2

� �
:

The function oðxÞ satisfies conditions (18) and the function o1ðxÞ can be taken the same as in
Example 2 (formula (27)). It is equal to zero over the parts MGA, KBR, PCF, and EDL.

The next tables present the lowest four frequency parameters for isotropic and orthotropic
plates shown in Fig. 2. A comprehensive study of the variations of the frequency parameters
depending on the change of the elliptical cut-out depth is presented for the isotropic plate in

Table 1

Dimensionless frequencies L ¼ 4la2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of isotropic square plates shown in Figs. 1(a) and (b) (Examples 1 and 2,

W ¼ 0:3; g ¼ a1=a)

Mode g

0 1/3 1/2 2/3 0.98 1

Example 1

Present (1,1) 19.74 27.52 28.45 28.85 28.95 28.95

Ref. [1] 19.74 28.10 28.44 28.80 28.94

Ref. [2] 19.74 27.30 28.37 28.82 28.96

Ref. [3] 19.74 27.85 28.62 28.90 28.96

Present (1,2) 49.35 65.18 67.86 69.035 69.32 69.30

Ref. [1] 49.35 66.86 67.85 68.90 69.29

Present (2,1) 49.35 51.92 53.49 654.44 54.74 54.74

Ref. [1] 49.35 52.85 53.49 54.33 54.74

Present (2,2) 78.96 85.68 90.46 93.58 94.58 94.58

Ref. [1] 78.96 88.44 90.50 93.20 94.59

Example 2

Present (1,1) 19.74 24.24 25.79 30.18 33.62 35.96

Ref. [1] 19.74 22.52 26.18 29.45 35.96

Present (1,2) 49.35 54.72 58.178 64.49 69.75 73.33

Ref. [1] 49.35 53.51 58.70 63.46 73.35

Present (2,1) 49.35 54.72 58.178 64.49 69.75 73.33

Ref. [1] 49.35 53.51 58.70 63.46 73.35

Present (2.2) 90.41 97.96 105.43 107.85 108.2

Ref. [1] 78.96 88.75 98.58 104.6 108.2
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Table 3

Dimensionless frequencies L ¼ 4la2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=H

p
of orthotropic square plates shown in Fig. 1b (Example 2), Z ¼ D1=H ;

m ¼ D2=H

Mode g ðZ; mÞ

(0.5;0.5) (0.5;1) (1;2)

Present (1,1) 0.5 21.59 23.83 29.74

Ref. [1] 22.58 25.09 28.64

1.0 28.07 32.27 42.396

Ref.[1] 28.07 32.27 42.70

Ref. [2] 28.1 32.3 42.4

Present (1,2) 0.5 47.08 56.67 73.20

Ref. [1] 47.79 60.55 71.82

1.0 56.62 71.50 98.87

Ref. [1] 56.63 71.50 96.58

Present (2,1) 0.5 47.08 49.19 61.88

Ref. [1] 47.79 50.57 61.31

1 56.62 58.99 76.84

Ref. [1] 56.63 58.99 77.63

Present (2,2) 0.5 81.99 90.45 111.88

Ref. [1] 85.45 92.17 110.1

1 88.41 98.81 124.67

Ref. [1] 88.42 98.81 126.4

Table 2

Dimensionless frequencies L ¼ 4la2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=H

p
of orthotropic plates shown in Fig. 1a (Example 1), Z ¼ D1=H and m ¼

D2=H

Mode g ða; bÞ

(0.5;0.5) (0.5;1) (1;2)

Present(1,1) 0.5 22.88 27.52 35.67

Ref. [1] 23.09 27.80 36.0

1.0 23.17 28.10 36.61

Ref. [1] 23.17 28.10 36.61

Present (1,2) 0.5 52.57 67.32 89.99

Ref. [1] 53.15 68.03 90.78

1.0 53.41 68.97 92.80

Ref. [1] 53.41 68.97 92.80

Present (2,1) 0.5 43.22 45.51 57.01

Ref. [1] 43.33 45.60 57.04

1 44.13 47.09 59.25

Ref. [1] 44.13 47.09 59.26

Present (2,2) 0.5 76.78 85.68 105.65

Ref. [1] 76.59 85.90 105.7

1 78.92 90.37 113.02

Ref. [1] 78.92 90.37 113.0
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Table 4 and for the orthotropic plate in Table 5. In both cases it is assumed that g ¼ ða1=aÞ ¼ 0:25;
(a) Z ¼ D1=H ¼ 0:5; m ¼ D2=H; (b) Z ¼ D1=H ¼ 0:5;m ¼ D2=H ¼ 1; (c) Z ¼ D1=H ¼ 1;
m ¼ D2=H ¼ 2:
Tables 4 and 5 present the four first frequency parameters for isotropic and orthotropic plates

shown in Fig. 2.
For all of the examples above, the indefinite components Fi were approximated by a complete

system of polynomials of degree N in expansion (12). A comprehensive numerical study has
shown a sufficiently rapid convergence of the method. All of the numerical data given in the
Tables 1–5 has been obtained by retaining the first 21 co-ordinate functions in expansion (12).

Table 4

Dimensionless frequencies L ¼ 4la2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of isotropic plates with mixed boundary conditions (Fig. 2, Example 3,

W=0.3)

b/a Mode

(1,1) (1,2) (2,1) (2,2)

Present 0 25.79 64.49 58.18 97.96

Ref. [1] 26.18 63.46 58.70 98.58

Present 0.05 28.42 64.25 64.25 98.85

Present 0.1 32.23 73.60 73.60 106.7

Present 0.15 41.40 92.10 92.10 125.2

Present 0.2 56.05 123.1 123.1 161.5

Present 0.25 80.82 176.5 176.5 222.9

Fig. 2. Numerical Example 3.
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Further increases in the number of co-ordinate functions did not affect the accuracy of the
solution.

5. Conclusion

In this paper, the R-function method for solving free vibration problems for thin, orthotropic
plates of an arbitrary plan form with mixed boundary conditions has been presented. RFM
enables one to seek the solution in the form of some analytical expressions and to construct
approximation sequences with the use of variational, projection, and, in principle, any other
methods. In this respect, RFM may be coupled with many the network-type methods, such as
BEM and FIE, etc. In addition, RFM holds the general advantages of classical analytical methods
but, at the same time, enables one to treat vibration eigen value problems for domains of complex
geometry.
In the RFM, all the geometric information from the mathematical model of the boundary value

problem being analyzed is transformed in the solution structure in analytical form. This enables
one to accomplish a total computerization of RFM formulations and to develop the highly
intelligent software technology for treating the above-mentioned dynamic problems for isotropic
and anisotropic plates of complex geometry with arbitrary boundary conditions.
It has been shown that the method yields rapid and convergent numerical solutions and these

results are in an excellent agreement with other sources of numerical or approximate solutions.
The accuracy and applicability of the RFM for the class of problems considered in this paper has
been verified successfully. Therefore, we can conclude that the method is very useful in addition to
the existing numerical and analytical methods available for the solution of free plate vibration
problems.
The further extension of the RFM for dynamic analysis by considering the forced flexural

vibrations of anisotropic plates and shallow shells of an arbitrary geometry with mixed boundary
conditions forms the key subject of the authors continuing research. The results and new findings
from this further research will be reported as a paper in due course.

Table 5

Dimensionless frequencies L ¼ 4la2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=H

p
of orthotropic square plates with mixed boundary conditions (Fig. 2,

Example 3)

(Z; m) b/a Mode

(1,1) (1,2) (2,1) (2,2)

(0.5;0.5) 0.005 23.85 51.53 51.36 89.90

(0.5;1) 26.37 63.10 53.17 91.35

(1;2) 32.52 82.21 66.87 112.6

(0.5;0.5) 0.125 31.86 66.59 66.45 97.12

(0.5;1) 34.53 80.89 68.32 106.5

(1;1) 40.74 104.1 84.67 129.2

(0.5;0.5) 0.25 71.27 144.9 145.0 191.0

(0.5;1) 77.04 174.5 149.2 208.9

(1;1) 90.19 222.1 183.7 252.0
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